Different DNA repair strategies to combat the threat from 8-oxoguanine.
نویسندگان
چکیده
Oxidative DNA damage is one of the most common threats to genome stability and DNA repair enzymes provide protection from the effects of oxidized DNA bases. In mammalian cells, base excision repair (BER) mediated by the OGG1 and MYH DNA glycosylases prevents the accumulation of 8-oxoguanine (8-oxoG) in DNA. When steady-state levels of DNA 8-oxoG were measured in myh(-/-) and myh(-/-)/ogg1(-/-) mice, an age-dependent accumulation of the oxidized purine was found in lung and small intestine of doubly defective myh(-/-)/ogg1(-/-) mice. Since there is an increased incidence of lung and small intestinal cancer in myh(-/-)/ogg1(-/-) mice, these findings are consistent with a causal role for unrepaired oxidized DNA bases in cancer development. We previously presented in vitro evidence that mismatch repair (MMR) participates in the repair of oxidative DNA damage and msh2(-/-) mouse embryo fibroblasts also have increased steady state levels of DNA 8-oxoG. To investigate whether DNA 8-oxoG also accumulates in vivo, basal levels were measured in several organs of 4-month-old msh2(-/-) mice and their wild-type counterparts. Msh2(-/-) mice had significantly increased levels of DNA 8-oxoG in spleen, heart, liver, lung, kidney and possibly small intestine but not in bone marrow, thymus or brain. The tissue-specificity of DNA 8-oxoG accumulation in msh2(-/-) and other DNA repair defective mice suggests that DNA protection of different organs is mediated by different combinations of repair pathways.
منابع مشابه
Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria.
Oxidative damage to mitochondrial DNA (mtDNA) has been implicated as a causative factor in many disease processes and in aging. We have recently discovered that different cell types vary in their capacity to repair this damage, and this variability correlates with their ability to withstand oxidative stress. To explore strategies to enhance repair of oxidative lesions in mtDNA, we have construc...
متن کامل8-Oxoguanine DNA Glycosylases: One Lesion, Three Subfamilies
Amongst the four bases that form DNA, guanine is the most susceptible to oxidation, and its oxidation product, 7,8-dihydro-8-oxoguanine (8-oxoG) is the most prevalent base lesion found in DNA. Fortunately, throughout evolution cells have developed repair mechanisms, such as the 8-oxoguanine DNA glycosylases (OGG), which recognize and excise 8-oxoG from DNA thereby preventing the accumulation of...
متن کاملhSSB1 (NABP2/OBFC2B) is regulated by oxidative stress
The maintenance of genome stability is an essential cellular process to prevent the development of diseases including cancer. hSSB1 (NABP2/ OBFC2A) is a critical component of the DNA damage response where it participates in the repair of double-strand DNA breaks and in base excision repair of oxidized guanine residues (8-oxoguanine) by aiding the localization of the human 8-oxoguanine glycosyla...
متن کاملThe Environmental Mutagen Society of Japan NII - Electronic Library Service
and singlet oxygen. ROS is also generated in cells by exposure to radiation and chemical carcinogens, Because ROS damages nearby cellular components such as DNA, proteins and lipids in mernbrane, cells must have evolved multiple defense mechanisms to combat the oxidative stress, Enzymes such as catalase or superoxide dismutase detoxify ROS, and low-molecular-weight scavengers such as glutathion...
متن کاملRepair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial dna of OGG1-defective mice.
Mitochondria are not only the major site for generation of reactive oxygen species, but also one of the main targets of oxidative damage. One of the major products of DNA oxidation, 8-oxodeoxyguanosine (8-oxodG), accumulates in mitochondrial DNA (mtDNA) at levels three times higher than in nuclear DNA. The main pathway for the repair of 8-oxodG is the base excision repair pathway initiated by o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mutation research
دوره 614 1-2 شماره
صفحات -
تاریخ انتشار 2007